Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 189: 106589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382627

RESUMO

Comprehensive safety assessment of potential probiotic strains is crucial in the selection of risk-free strains for clinical translation. This study aimed to evaluate the biosafety of Limosilactobacillus fermentum NCDC 400, a potential probiotic strain, using oral toxicity tests in a Swiss albino mouse model. Mice were orally gavaged with low (108 CFU/mouse/day) and high (1010 CFU/mouse/day) doses of NCDC 400 for 14 (acute), 28 (subacute), and 90 (subchronic) days to assess behavioral, hematological, biochemical, immunological, and histological effects. The administration of NCDC 400 did not result in any observable adverse effects on general health parameters, including body weight, feed and water intake, and organ indices. Hematological and biochemical parameters, such as glucose, serum enzymes, urea, creatinine, serum minerals, total serum proteins, and lipid profile, remained largely unaffected by the test strain. Notably, NCDC 400 administration led to a significant reduction in harmful intestinal enzymes and improvement in gut health indices, as indicated by fecal pH, lactate, ammonia, and short-chain fatty acids. There were no instances of bacterial translocation of NCDC 400 to blood or extra-intestinal organs. Immune homeostasis was not adversely affected by repeated exposure to NCDC 400 in all three oral toxicity studies. Histopathological examination revealed no strain-related changes in various tissues. Based on these findings, a dose of 1010 CFU/mouse/day was considered as the No Observable Effect Level (NOEL) in healthy mice. In conclusion, this study demonstrates the safe and non-toxic behavior of L. fermentum NCDC 400. The results support and ensure the safety and suitability for clinical trials and eventual translation into clinical practice as potential probiotic.


Assuntos
Limosilactobacillus fermentum , Probióticos , Camundongos , Animais , Modelos Animais de Doenças , Probióticos/metabolismo , Testes de Toxicidade
2.
J Sci Food Agric ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334314

RESUMO

Dietary patterns play an important role in regards to the modulation and control of the gut microbiome composition and function. The interaction between diet and microbiota plays an important role in order to maintain intestinal homeostasis, which ultimately affect the host's health. Diet directly impacts the microbes that inhabit the gastrointestinal tract (GIT), which then contributes to the production of secondary metabolites, such as short-chain fatty acids, neurotransmitters, and antimicrobial peptides. Dietary consumption with genetically modified probiotics can be the best vaccine delivery vector and protect cells from various illnesses. A holistic approach to disease prevention, treatment, and management takes these intrinsically linked diet-microbes, microbe-microbe interactions, and microbe-host interactions into account. Dietary components, such as fiber can modulate beneficial gut microbiota, and they have resulting ameliorative effects against metabolic disorders. Medical interventions, such as antibiotic drugs can conversely have detrimental effects on gut microbiota by disputing the balance between Bacteroides and firmicute, which contribute to continuing disease states. We summarize the known effects of various dietary components, such as fibers, carbohydrates, fatty acids, vitamins, minerals, proteins, phenolic acids, and antibiotics on the composition of the gut microbiota in this article in addition to the beneficial effect of genetically modified probiotics and consequentially their role in regards to shaping human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Foods ; 12(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37835248

RESUMO

Exopolysaccharides (EPS) are acknowledged for their diverse functional and technological properties. This study presents the characterization of EPS400, an acidic exopolysaccharide sourced from the native probiotic Limosilactobacillus fermentum NCDC400. Notably, this strain has demonstrated previous capabilities in enhancing dairy food texture and displaying in vivo hypocholesterolemic activity. Our investigation aimed to unveil EPS400's potential biological roles, encompassing antioxidant, antibacterial, and immunomodulatory activities. The results underscore EPS400's prowess in scavenging radicals, including the 2,2-diphenyl-1-picrylhydrazyl radical, 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) radical, superoxide radical, hydroxyl radical, and chelating activity targeting the ferrous ion. Furthermore, EPS400 displayed substantial antibacterial effectiveness against prevalent food spoilage bacteria such as Pseudomonas aeruginosa NCDC105 and Micrococcus luteus. Remarkably, EPS400 exhibited the ability to modulate cytokine production, downregulating pro-inflammatory cytokines TNF-α, IL-1ß, IL-6, and nitric oxide, while concurrently promoting the release of anti-inflammatory cytokine IL-10 within lipopolysaccharide-activated murine primary macrophages. Additionally, EPS400 significantly (p ≤ 0.05) enhanced the phagocytic potential of macrophages. Collectively, our findings spotlight EPS400 as a promising contender endowed with significant antioxidant, antibacterial, and immunomodulatory attributes. These characteristics propose EPS400 as a potential pharmaceutical or bioactive component, with potential applications in the realm of functional food development.

4.
Food Funct ; 14(10): 4931-4947, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37158475

RESUMO

The prevalence of iron deficiency anaemia is a significant issue worldwide, affecting individuals of all ages and often associated with inadequate iron bioavailability. Despite the use of ferrous salt supplements to address anaemia, their limited bioaccessibility and bioavailability in human GIT and adverse impact on food properties remain significant challenges. Hence, this study aims to explore the iron chelation mechanism of an exopolysaccharide EPSKar1 to enhance iron bioaccessibility, bioavailability, and anti-anaemic effects using cell culture and an anaemic rat model. EPSKar1 was extracted from Lacticaseibacillus rhamnosus Kar1 and complexed with FeSO4 to form "EPSKar1-iron". This novel complex, besides being bio-accessible after in vitro gastric digestion, demonstrated 61.27 ± 1.96% iron bioavailability to the Caco-2 cells. In line with these in vitro findings, intragastric administration of the EPSKar1-iron complex to anaemic Wistar rats at 25 and 50 mg per kg body weight significantly restored blood haemoglobin levels and re-established the morphological features of red blood cells. Furthermore, the apparent digestibility co-efficient and iron uptake improved significantly without adversely affecting the serum biochemical parameters in these anaemic rats. The levels of iron-transport proteins including serum transferrin and ferritin in tissue and plasma have increased remarkably upon oral administration of EPSKar1-iron at a higher dose of 50 mg per kg body weight. Oral supplementation of EPSKar1-iron did not foster adverse histological changes in the liver, kidneys, and spleen. In fact, the treatment with the EPSKar1-iron complex had a restitution effect on the tissue architecture, thereby ameliorating the tissue lesions. These findings collectively indicate that the EPSKar1-iron complex shows nutraceutical potential in enhancing the bioavailability of iron and could be a promising approach to tackle iron deficiency anaemia.


Assuntos
Anemia Ferropriva , Anemia , Humanos , Ratos , Animais , Ferro/metabolismo , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/metabolismo , Ratos Wistar , Disponibilidade Biológica , Células CACO-2 , Anemia/tratamento farmacológico , Hemoglobinas/metabolismo
5.
Crit Rev Food Sci Nutr ; : 1-29, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37039078

RESUMO

Probiotics are amply studied and applied dietary supplements of greater consumer acceptance. Nevertheless, the emerging evidence on probiotics-mediated potential risks, especially among immunocompromised individuals, necessitates careful and in-depth safety studies. The traditional probiotic safety evaluation methods investigate targeted phenotypic traits, such as virulence factors and antibiotic resistance. However, the rapid innovation in omics technologies has offered an impactful means to ultimately sequence and unknot safety-related genes or their gene products at preliminary levels. Further validating the genome features using an array of phenotypic tests would provide an absolute realization of gene expression dynamics. For safety studies in animal models, the in vivo toxicity evaluation guidelines of chemicals proposed by the Organization for Economic Co-operation and Development (OECD) have been meticulously adopted in probiotic research. Future research should also focus on coupling genome-scale safety analysis and establishing a link to its transcriptome, proteome, or metabolome for a fine selection of safe probiotic strains. Considering the studies published over the years, it can be inferred that the safety of probiotics is strain-host-dose-specific. Taken together, an amalgamation of in silico, in vitro, and in vivo approaches are necessary for a fine scale selection of risk-free probiotic strain for use in human applications.

6.
Curr Res Food Sci ; 6: 100478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935848

RESUMO

Iron is a micronutrient essential for human health and physiology. Iron-deficiency anemia, the most common form of anemia, may occur from an iron homeostasis imbalance. Iron fortification is a promising and most sustainable and affordable solution to tackle the global prevalence of this anemia. Herein, we investigate physicochemical, rheological and stability characteristics of a novel exopolysaccharide 'EPSKar1' (derived from Lacticaseibacillus rhamnosus strain Kar1) and its iron complex 'EPSKar1-Fe (II)'. Our findings demonstrate that EPSKar1 is a high molecular-weight (7.8 × 105 Da) branched-chain heteropolysaccharide composed of galactose, N-acetylglucosamine, and mannose in a molar ratio of 8:4:1, respectively, and exhibits strong emulsifying and water-holding capacities. We find that EPSKar1 forms strong complexes with Fe, wherein the interactions between EPSKar1-Fe (II) complexes are mediated by sulfate, carboxyl, and hydroxyl groups. The rheological analyses reveal that the EPSKar1 and EPSKar1-Fe (II) complexes exhibited shear thickening and thinning properties in skim milk and water, respectively; however, the suspension of EPSKar1 in skim milk is viscoelastic with predominantly elastic response (G'>G" and tan Î´ < 1). In comparison, EPSKar1-Fe (II) complex exhibits remarkable stability under various processing conditions, highlighting its usefulness for the development of fortified dairy products. Together, these findings underpin considerable prospects of EPSKar1-Fe (II) complex as a novel iron-fortifier possessing multifarious rheological benefits for food applications.

7.
World J Microbiol Biotechnol ; 39(3): 73, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36627394

RESUMO

Fructophilic Lactic Acid Bacteria (FLAB), Fructobacillus fructosus DPC7238 and pseudofructophilic Leuconostoc mesenteroides DPC7261 and non-FLAB Limosilactobacillus reuteri DSM20016 strains were studied for their growth and morphological evolution as a function of increased fructose concentrations (0, 25, and 50% w/v) in the media. A comparison of the genomics of these strains was carried out to relate observed changes and understand fructose-rich adaptations. The viability of FLAB strains were reduced by approx. 50% at a 50% fructose concentration, while the Limosilactobacillus reuteri strain was reduced to approx. 98%. Electron microscopy demonstrated that FLAB strain, Fructobacillus. fructosus and pseudofructophilic Leuc. mesenteroides, were intact but expanded in the presence of high fructose in the medium. Limosilactobacillus reuteri, on the other hand, ruptured as a result of excessive elongation, resulting in the formation of cell debris when the medium contained more than 25% (w/v) fructose. This was entirely and quantitatively corroborated by three-dimensional data obtained by scanning several single cells using an atomic force microscope. The damage caused the bacterial envelope to elongate lengthwise, thus increasing width size and lower height. The cell surface became comparatively smoother at 25% fructose while rougher at 50% fructose, irrespective of the strains. Although Fructobacillus fructosus was highly fructose tolerant and maintained topological integrity, it had a comparatively smaller genome than pseudofructophilic Leuc. mesenteroides. Further, COG analysis identified lower but effective numbers of genes in fructose metabolism and transport of Fructobacillus fructosus, essentially needed for adaptability in fructose-rich niches.


Assuntos
Lactobacillales , Lactobacillales/genética , Lactobacillales/metabolismo , Frutose/metabolismo , Genômica , Ácido Láctico/metabolismo
8.
J Food Biochem ; 46(12): e14509, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334279

RESUMO

Obesity has reached epidemic proportions, with major economic and health implications. The complex pathophysiology of obesity explains the difficulty provided to health policy for its clinical management. Increasing data show that obesity and metabolic abnormalities are intimately connected to differences in consumption of probiotics, its relevance to gut microbiota activity and composition. The goal of this investigation was to assess the effect of oral delivery of indigenous probiotic Lactobacillus fermentum NCDC 400 and prebiotic fructo-oligosaccharide (FOS) on obesity-associated hepatic steatosis and inflammation produced by a high-fat diet (HFD). C57BL/6 mice treated with L. fermentum NCDC 400 either independently or in conjunction with FOS demonstrated reduced body weight and abdominal obesity after 24 weeks of treatment. Also, the anti-oxidative enzyme activity went down, and the inflammatory profile got better, with less fat getting into the hepatocytes. The lipid profile changed, with HDL cholesterol going up and LDL cholesterol and triglyceride levels going down. Further, L. fermentum NCDC 400 and FOS combinations decreased fasting glucose, gHbA1c, gastric inhibitory peptide, and insulin levels in mice fed with HFD, thus improving glucose homeostasis. Overall, consumption of L. fermentum NCDC 400 alone or its combinational effects had a protective role on obesity-associated hepatic steatosis. PRACTICAL APPLICATIONS: The potential indigenous probiotic Lactobacillus fermentum NCDC 400 and prebiotic FOS had a preventive role in obesity-induced hepatic steatosis and improves anti-oxidant and anti-inflammatory properties in HFD-fed obese mice. Our finding would be helpful to prevent obesity-associated hepatic steatosis and inflammation upon supplementation of pre- and pro-biotics (synbiotics).


Assuntos
Fígado Gorduroso , Limosilactobacillus fermentum , Probióticos , Camundongos , Animais , Prebióticos , Leite , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/prevenção & controle , Probióticos/farmacologia , Inflamação/etiologia , Fígado Gorduroso/etiologia , Glucose
9.
Microorganisms ; 10(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296322

RESUMO

This study aimed to investigate the protective effect of a novel exopolysaccharide EPSRam12, produced by Lacticaseibacillus rhamnosus Ram12, against D-galactose-induced brain injury and gut microbiota dysbiosis in mice. The findings demonstrate that EPSRam12 increases the level of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase, total antioxidant capacity, and the level of anti-inflammatory cytokine IL-10, while decreasing malonaldehyde, nitric oxide, pro-inflammatory cytokines including TNF-α, IL-1ß, IL-6, MCP-1, and the mRNA expression of cyclooxygenase-2, inducible nitric oxide synthase, and the activation of nuclear factor-kappa-B in the brain tissues of D-galactose-treated mice. Further analyses reveal that EPSRam12 improves gut mucosal barrier function and increases the levels of short-chain fatty acids (SCFAs) in the intestine while restoring gut microbial diversity by enriching the abundance of SCFA-producing microbial genera Prevotella, Clostridium, Intestinimonas, and Acetatifactor while decreasing potential pathobionts including Helicobacter. These findings of antioxidative and anti-inflammatory effects in the brain and ameliorative effects on epithelial integrity, SCFAs and microbiota in the gut, provide novel insights into the effect of EPSRam12 intervention on the gut-microbiome-brain axis and should facilitate prospective understanding of microbial exopolysaccharide for improved host health.

10.
Peptides ; 155: 170843, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878657

RESUMO

Infections of microbial and non-microbial origins have been associated with significant immunological manifestations, thereby underscoring the need for a thorough understanding and investigation of novel immunomodulatory and antioxidant molecules that could prevent these incidences. To this end, we herein aim to identify fermented milk peptides with antioxidant and immunomodulatory properties that could be exploited for specific future applications. Our computational prediction models indicate that these peptides are non-toxic and possess considerable hydrophobicity (19.82-38.96 %) and functionality. Further analyses reveal that two of the four peptides, i.e., Pep 1 (AGWNIPM) and Pep 4 (YLGYLEQLLR), possess higher in-vitro antioxidant activity. The immunomodulatory potential of these two peptides (Pep 1 and Pep 4) is further demonstrated by using a combination of molecular simulation trajectory and ex-vivo approaches. Both peptides demonstrate ability to control the production of pro- inflammatory (TNF-α, IL-1, and IL-6) and anti-inflammatory (IL-10) cytokines as well as nitric oxide release in LPS-stimulated murine peritoneal macrophages. Similarly, peptide interferences also lead to significant (P < 0.05) improvement in macrophage phagocytic capacity. Taken together, these findings highlight the antioxidant and immunomodulatory properties of fermented milk peptides (Pep 1 and Pep 4) within the cellular environment and should facilitate prospective studies exploring such bioactive peptides and related functional molecules mediating the benefits of fermented milk products on human health.


Assuntos
Produtos Fermentados do Leite , Leite , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Fermentação , Humanos , Camundongos , Leite/química , Leite/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Estudos Prospectivos
11.
Food Res Int ; 150(Pt A): 110716, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865747

RESUMO

Emerging evidence and an in-depth understanding of the microbiome have helped in identifying beneficial commensals and their therapeutic potentials. Specific commensal taxa/ strains of the human gut microbiome have been positively associated with human health and recently termed as next-generation probiotics (NGPs). Of these, Akkermansia muciniphila, Ruminococcus bromii, Faecalibacterium prausnitzii, Anaerobutyricum hallii, and Roseburia intestinalis are the five most relevant gut-derived NGPs that have demonstrated therapeutic potential in managing metabolic diseases. Specific and natural dietary interventions can modulate the abundance and activity of these beneficial bacteria in the gut. Hence, the understanding of targeted stimulation of specific NGP by specific probiotic-targeted diets (PTD) is indispensable for the rational application of their combination. The supplementation of NGP with its specific PTD will help the strain(s) to compete with harmful microbes and acquire its niche. This combination would enhance the effectiveness of NGPs to be used as "live biotherapeutic products" or food nutraceuticals. Under the current milieu, we review various PTDs that influence the abundance of specific potential NGPs, and contemplates potential interactions between diet, microbes, and their effects on host health. Taking into account the study mentioned, we propose that combining NGPs will provide an alternate solution for developing the new diet in conjunction with PTD.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Dieta , Humanos , Verrucomicrobia
12.
Food Sci Biotechnol ; 30(4): 487-496, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33936839

RESUMO

Over the years, the attempts to elucidate the role of beneficial microorganisms in shaping human health are becoming fairly apparent. The functional impact conferred by such microbes is not only transmitted by viable cells or their metabolites but also through non-viable cells. Extensive research to unveil the protective action of such wonder bugs has resulted in categorizing the beneficial microflora and their bioactive metabolites into a variety of functional biotic concepts based on their intended applications in various forms. In the modern era, these are often termed as probiotics, prebiotics, synbiotics, postbiotics, next-generation probiotics, psychobiotics, oncobiotics, pharmabiotics, and metabiotics. Currently, the concept of traditional probiotics is being widened to include microbes beyond lactic acid bacteria. Indeed, this diversification has broadened the functional food portfolio from food to pharmaceuticals. In this context, the present review aims to summarize the existing biotic concepts and their differences thereof.

13.
Microbiol Resour Announc ; 9(50)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303674

RESUMO

Certain bacterial species, including some fructophilic lactic acid bacteria, are known to naturally produce the sugar alcohol mannitol. Here, we announce the draft genome sequences of the mannitol-producing organisms Fructobacillus fructosus DPC 7238 and Leuconostoc mesenteroides DPC 7261, which were isolated from fructose-rich honeybee-resident flowers found on an Irish farm.

14.
J Dairy Sci ; 103(12): 11138-11151, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33010917

RESUMO

Mannitol is a sugar alcohol, or polyol, widely used in the food industry because of its low-calorie properties. Industrial production of mannitol is difficult and expensive. However, certain bacterial species are known to produce mannitol naturally, including certain lactic acid bacteria and fructophilic lactic acid bacteria (LAB). In this study, bacterial strains isolated from fructose-rich sources, including flowers, leaves, and honey, were identified by 16S rRNA sequence analysis as Leuconostoc, Fructobacillus, Lactococcus, and Lactobacillus species and 4 non-LAB species. DNA profiles generated by pulsed-field gel electrophoresis discriminated 32 strains of Leuconostoc mesenteroides and 6 Fructobacillus strains. Out of 41 LAB strains isolated, 32 were shown to harbor the mdh gene, which encodes the mannitol dehydrogenase enzyme, and several showed remarkable fructose tolerance even at 50% fructose concentrations, indicating their fructophilic nature. Several of the strains isolated, including Leuconostoc mesenteroides strains DPC 7232 and DPC 7261, Fructobacillus fructosus DPC 7237, and Fructobacillus fructosus DPC 7238, produced higher mannitol concentrations than did the positive control strain Limosilactobacillus reuteri DSM 20016 during an enzymatic screening assay. Mannitol concentrations were also examined via HPLC in 1% fructose de Man, Rogosa, and Sharpe medium (FMRS) or 1% fructose milk (FM). Among the strains, Fructobacillus fructosus DPC 7238 displayed high fructose utilization (9.27 g/L), high mannitol yield (0.99 g of mannitol/g of fructose), and greatest volumetric productivities (0.46 g/L per h) in FMRS. However, Leuconostoc mesenteroides DPC 7261 demonstrated the highest fructose utilization (8.99 g/L), mannitol yield (0.72 g of mannitol/g of fructose), and volumetric productivities (0.04 g/L per h) in FM. Storage modulus G' (>0.1 Pa) indicated a shorter gelation time for Limosilactobacillus reuteri DSM 20016 (8.73 h), followed by F. fructosus DPC 7238 (11.57 h) and L. mesenteroides DPC 7261 (14.52 h). Our results show that fructose-rich niches can be considered important sources of fructophilic LAB strains, with the potential to be used as starter cultures or adjunct cultures for the manufacture of mannitol-enriched fermented dairy products and beverages.


Assuntos
Lactobacillales/metabolismo , Manitol/metabolismo , Leite/metabolismo , Animais , Produtos Fermentados do Leite , Frutose/metabolismo , Géis/metabolismo , Lactobacillales/classificação , Lactobacillales/isolamento & purificação , Lactobacillus/isolamento & purificação , Lactococcus/isolamento & purificação , Leuconostoc/isolamento & purificação , Leuconostocaceae , RNA Ribossômico 16S
15.
Microb Cell Fact ; 19(1): 168, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819443

RESUMO

Probiotics have several health benefits by modulating gut microbiome; however, techno-functional limitations such as viability controls have hampered their full potential applications in the food and pharmaceutical sectors. Therefore, the focus is gradually shifting from viable probiotic bacteria towards non-viable paraprobiotics and/or probiotics derived biomolecules, so-called postbiotics. Paraprobiotics and postbiotics are the emerging concepts in the functional foods field because they impart an array of health-promoting properties. Although, these terms are not well defined, however, for time being these terms have been defined as here. The postbiotics are the complex mixture of metabolic products secreted by probiotics in cell-free supernatants such as enzymes, secreted proteins, short chain fatty acids, vitamins, secreted biosurfactants, amino acids, peptides, organic acids, etc. While, the paraprobiotics are the inactivated microbial cells of probiotics (intact or ruptured containing cell components such as peptidoglycans, teichoic acids, surface proteins, etc.) or crude cell extracts (i.e. with complex chemical composition)". However, in many instances postbiotics have been used for whole category of postbiotics and parabiotics. These elicit several advantages over probiotics like; (i) availability in their pure form, (ii) ease in production and storage, (iii) availability of production process for industrial-scale-up, (iv) specific mechanism of action, (v) better accessibility of Microbes Associated Molecular Pattern (MAMP) during recognition and interaction with Pattern Recognition Receptors (PRR) and (vi) more likely to trigger only the targeted responses by specific ligand-receptor interactions. The current review comprehensively summarizes and discussed various methodologies implied to extract, purify, and identification of paraprobiotic and postbiotic compounds and their potential health benefits.


Assuntos
Produtos Biológicos , Terapia Biológica , Alimento Funcional/microbiologia , Benefícios do Seguro , Bactérias/metabolismo , Microbioma Gastrointestinal , Viabilidade Microbiana , Probióticos
16.
J Food Sci Technol ; 55(7): 2801-2807, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30042597

RESUMO

This study aimed to check the in vitro probiotic properties of eleven Lactobacillus fermentum strains previously isolated from fermented dairy products and infant faeces. These cultures were tested for their tolerance to different pH such as 2.0, 2.5, 3.0, 3.5 and 6.5, bile salt hydrolysis and cell surface hydrophobicity. All the strains were persistent at pH 3.5 for 3 h whereas only faecal origin isolates such as L. fermentum BIF-19, BIF-20, BIF-18 and MTCC 8711 had shown considerable growth at pH 2.5. The strains NCDC-400, MTCC 8711, BIF-18, BIF-19 and BIF-20 showed slight to intense precipitation zone of bile salt hydrolase activity by agar plate assay. The strain L. fermentum BIF-19 exhibited best preliminary probiotic properties was selected for the adhesion to Caco-2 cell lines, which shows similar adhesion to that observed for standard probiotic Lactobacillus rhamnosus GG.

17.
J Food Sci Technol ; 50(6): 1228-32, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24426040

RESUMO

Lactobacillus fermentum V10 was able to show large capsules surrounding the cell surface and produced 247.37 ± 0.76 mg/L polysaccharides in fermentation medium. The effect on technological properties of low-fat dahi found to be significantly (P < 0.01) improved for Lactobacillus fermentum V10 than control dahi made by EPS(+) Lb. delbrueckii subsp. bulgaricus NCDC 285 and EPS(-) Lb. delbrueckii subsp. bulgaricus 09 cultures. Low fat dahi prepared by exopolysaccharides producing Lactobacillus fermentum V10 exhibited optimum acid production, lesser whey separation, higher viscosity, increased adhesiveness and stickiness whereas decreased firmness and work of shear as compared to control dahi.

18.
FEMS Microbiol Lett ; 334(1): 1-15, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22568660

RESUMO

In the industrialized world, functional foods have become a part of an everyday diet and are demonstrated to offer potential health benefits beyond the widely accepted nutritional effects. Currently, the most important and frequently used functional food compounds are probiotics and prebiotics, or they are collectively known as 'synbiotics'. Moreover, with an already healthy image, dairy products appear to be an excellent mean for inventing nutritious foods. Such probiotic dairy foods beneficially affect the host by improving survival and implantation of live microbial dietary supplements in the gastrointestinal flora, by selectively stimulating the growth or activating the catabolism of one or a limited number of health-promoting bacteria in the intestinal tract, and by improving the gastrointestinal tract's microbial balance. Hence, the paper reviews the current scenario of probiotics and their prospective potential applications for functional foods for better health and nutrition of the society.


Assuntos
Alimentos Orgânicos , Benefícios do Seguro , Probióticos , Alimentos Orgânicos/análise , Alimentos Orgânicos/microbiologia , Alimento Funcional/análise , Alimento Funcional/microbiologia , Humanos , Probióticos/análise
19.
Gene ; 490(1-2): 54-9, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21963996

RESUMO

The aim of this study was to investigate the chemopreventive effect of probiotic fermented milk and chlorophyllin on aflatoxin B1 (AFB1) induced hepatocellular carcinoma. In vivo trials were conducted on 200 Wistar rats allocated to eight groups. Rats in the positive control group were given intraperitoneal injection of aflatoxin B1 at 450 µg/kg body weight twice a week for 6 weeks. The rats were sacrificed and dissected at 25th week of the experiment, and comet assay was carried out in hepatic cells to assess the genotoxicity or DNA damage. The tumour incidence was decreased by approximately one-third than AFB1 control group. The expression of c-myc bax, bcl-2, cyclin D1, p53 and rasp-21 genes was also studied. A significant (P<0.05) reduction in DNA damage was observed in probiotic fermented milk with chlorophyllin group as compared to aflatoxin B1 control group. The c-myc, bcl-2, cyclin D1 and rasp-21 level was found to be highest in AFB1 control group as compared to the treatment group. The results advocate the enhanced protective potential of probiotic fermented milk and chlorophyllin against AFB1-induced molecular alterations in hepatic cells during carcinogenesis.


Assuntos
Carcinoma Hepatocelular/induzido quimicamente , Clorofilídeos/farmacologia , Produtos Fermentados do Leite , Neoplasias Hepáticas/induzido quimicamente , Probióticos/farmacologia , Aflatoxina B1 , Animais , Carcinoma Hepatocelular/prevenção & controle , Ensaio Cometa , Dano ao DNA , Expressão Gênica , Neoplasias Hepáticas/prevenção & controle , Masculino , Mutagênicos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...